
2021 State of
Open-Source
Security Report

contrastsecurity.com

Trends and Best Practices from
Real-world Software Supply Chains

Foreword

Executive Summary
 • Infographic: Key Findings

Introduction

Library Counts: Indicative Of Complexity,

Not Necessarily Risk

Risk Layer 1: Active And Inactive Libraries

Risk Layer 2: Active And Inactive Library Cl Asses

Risk Layer 3: Library Age

Risk Layer 4: Vulnerabilities In Libraries

Risk Layer 5: Licensing Risk

Conclusion

01
02
03
04
05
06
07
08
09
10

Table of contents

Already an accelerating trend before the world-changing events of 2020, digital
transformation is now moving at breakneck speed to bring radical change to the way
organizations conduct business.

Applications are at the heart of this phenomenon, delivering new experiences for
both business customers and consumers while improving operational efficiency and
creating new revenue streams.

Somewhat hidden in this process are millions of software developers, who have
honed their craft to the point that it functions as a fast and efficient “software factory,”
with extensive automation and standardization of processes across the software
development life cycle (SDLC). Using methodologies like Agile and DevOps, they have
accelerated release cycles while improving quality. One practice that contributes to
this efficiency is code reuse, which includes open-source libraries and frameworks.
The typical application today contains dozens and quite often hundreds of libraries,
many of which provide indispensable core functionality and help propel digital
transformation.

But the efficiency brought about by the extensive use of libraries is not without
risk. The increased reliance on applications has not escaped the attention of
cyber criminals, who have shifted more attention to this attack vector. The massive
SolarWinds attack that was revealed in late 2020 is a stark reminder of the
vulnerability of the software supply chain and the risk it poses.

Recognizing the importance of securing the software supply chain, Contrast Labs
is pleased to announce the publication of research findings regarding open-source
utilization and risk. The analysis is based on telemetry from tens of thousands of real-
world applications and application programming interfaces (APIs) that are assessed
and protected by Contrast solutions. This data comes from real-world examples of the
software supply chain.

The report identifies five areas of risk around open-source libraries and frameworks:
active and inactive libraries, active and inactive library classes, library age, open-
source vulnerabilities, and licensing risk.

Each of these areas brings risk to organizations that can hamper operational efficiency,
the ability to prevent and thwart attacks by cyber criminals, and avoid legal problems
regarding software ownership.

01 | Forward

3

B I MONTH LY R E PORT

contrastsecurity.com3

We frequently assert that not every software vulnerability should be treated the same,
and this is especially true with open-source software. Indeed, our data shows that
62% of libraries present in an application are not used at all by the software, and thus
they present no risk. But the issue is deeper: Of libraries that are used, only 31% of the
classes in those libraries are invoked by the application. The truth is, while third-party
libraries comprise the majority of an application in terms of lines of code, less than
one-tenth of the code that actually runs comes from open source. The rest comes
from custom code written by developers. Unfortunately, legacy software composition
analysis (SCA) tools focus on everything equally, and fail to identify what really
matters. This ratchets up risk while increasing inefficiencies.

The result is that a huge share of the vulnerabilities found in open-source code in
a typical application are inactive and pose no risk. Further, as traditional SCA tools
identify all vulnerabilities and view them the same, this translates into a tremendous
amount of wasted time. This operational inefficiency is compounded by the fact that
not all vulnerabilities found in active libraries and classes should be treated the same—
only a fraction pose serious risk. The lack of comprehensive observability also impacts
the ability to track and manage open-source licensing: A surprising percentage of
applications have open-source licensing exposures.

Open-source software is firmly embedded in every organization’s software stack.
Each company must adapt its software factory with processes and technologies to
identify software supply chain issues and prevent them from exposing the businesses
to attack. Our goal with the 2021 State of Open-source Security Report is to help
organizations understand the layers of risk presented by open-source software, and
the strategies they can employ to mitigate that risk. Taking these steps can help
organizations to take advantage of the full potential that modern software offers to
organizations in all industries, while minimizing risk.

Sincerely,

JEFF WILLIAMS
CTO and Co-Founder

DAVID LINDNER
Chief Information Security Officer

4

B I MONTH LY R E PORT

contrastsecurity.com4

As open-source libraries continue to increase in importance to developers in
producing business-critical software against aggressive deadlines, such libraries
proliferate in number and in complexity. The 2021 Contrast Labs Open-source
Security Report uses telemetry from actual applications protected by Contrast OSS
and Contrast Assess to reveal key trends about library usage, vulnerabilities, and best
practices from thousands of real-world software supply chains. Key findings include:

• While the average application contains 118 libraries, the more important metric is
that only 38% of libraries are active—that is, used by the application. Further, only
31% of library classes within active libraries are actually ever invoked by a given
piece of software. While libraries comprise a large percentage of the lines of code
present in an application, less than 10% of code in applications is active third-
party library code.

• The average library uses a version that is 2.6 years old. This increases the risk of
unaddressed vulnerabilities while expanding the amount of work required when an
update is finally done.

• The average Java application has 50 open-source library vulnerabilities, and the
odds are 16% that a given Java library in an application will have a vulnerability.

• Software composition analysis (SCA) tools, which do not differentiate between
vulnerabilities in inactive libraries and classes and active ones, return false
positives when they identify a CVE that poses no risk. The false positivity rate
is 23% for Java applications, 13% for .NET applications, and 69% for Node
applications.

• High-risk licenses are present in 69% of Java applications and 33% of Node
applications. These expose organizations to significant legal risk by legally
obligating the license holder to make any resulting software open source.

Given recent vulnerability exposures and attacks of the software supply chain, it is
imperative that organizations pay much closer attention to the open-source code
used in their applications. There are significant risks in open-source libraries, but
identifying and remediating the ones that matter requires a different approach, one
that provides a comprehensive picture of active and inactive libraries and classes,
library age, vulnerabilities, and licensing issues. Legacy SCA and application security
tools simply do not provide the level of accuracy and observability required—
especially when the C-suite and boards of directors are pressing for greater
business acceleration.

02 | Executive Summary

5

B I MONTH LY R E PORT

contrastsecurity.com5

Key Findings

6

B I MONTH LY R E PORT

contrastsecurity.com6

118

32%

38%

2.6

LIBRARY USE
The average application
contains 118 open-source
libraries.

ACTIVE/INACTIVE
LIBRARY CLASSES
Only 32% of classes are
invoked by active Java
libraries.

ACTIVE/INACTIVE
LIBRARIES
Only 38% of libraries
present in applications are
used; Node applications are
the lowest of all languages
with only 24%.

LIBRARY AGE
The average library uses a
version that is 2.6 years old.

Key Findings

7

B I MONTH LY R E PORT

contrastsecurity.com7

50

69%

23%

16%

99%

13%

44%

69%

The average Java
application has 50 open-
source vulnerabilities.

69% of Java applications
and 33% of Node
applications include a
library with a high-risk
license.

FOR JAVA

OPEN-SOURCE VULNERABILITIES

LICENSING

FALSE POSITIVITY RATES FOR LEGACY SCA TOOLS:

Java libraries in
applications have a 16%
chance of having a
Critical or Major
vulnerability.

99% of organizations
have at least one high-risk
Java license.

FOR .NET

The odds of an application
having a vulnerability in a
Java library increase from
7% to 44% as the library age
goes from 1 year to 4 years.

FOR NODE

The discipline of software development has dramatically improved its speed
and efficiency in recent years. Methodologies like Agile and DevOps leverage
principles from manufacturing to streamline and automate as much of the software
development life cycle (SDLC) as possible. These advances not only enable software
to be developed much more quickly than a decade ago but have also improved the
quality of the software from both a back end and user experience perspective. The
transformation has been so complete that the term “software factory” has recently
been resurrected to describe the operation.1

Like a well-run manufacturing floor, today’s software factory uses a unified team for
every aspect of the SDLC, from development to operations. The software factory
team uses clear policies, automated processes, and standardized development tools.
And importantly, they leverage software reuse as a deliberate strategy. While some
of that repurposed code comes from internal repositories, much of it comes from
open-source libraries.

The efficiency and effectiveness gains from this approach are real. A recent
McKinsey report found that open-source adoption was the biggest differentiator
for organizations in the top quartile of their Developer Velocity Index (DVI).2 As the
authors of the study note, “We found that building an open-source culture is about
more than using open-source software within the code; it extends to encouraging
contribution and participation in the open-source community as well as adopting
a similar approach to how code is shared internally—that is, strong InnerSource
adoption.”3

SECURITY CHALLENGES FOR OPEN-SOURCE LIBRARIES
AND FRAMEWORKS

But this increase in efficiency is not without cost. The massive SolarWinds
application attack4 is a reminder that the software factory is a target for cyber
criminals. The 2020 Verizon Data Breach Investigations Report found that 43% of
data breaches this past year were the result of a web application vulnerability—a
figure that more than doubled over the previous year.5 And the number of open-
source vulnerabilities logged into the Common Vulnerabilities and Exposures (CVE)
database has increased dramatically in recent years.

Another security challenge involves the increasing complexity of library use in
applications. Imagine a library with several functions—A, B, and C. This library relies
on numerous other libraries (called “transitive dependencies”) to implement those
functions. A developer wanting to use function A will inadvertently include all the
libraries that support functions B and C in the application.

These complex dependency trees make developers reluctant to remove or update
old libraries, fearful that doing so will have unforeseen downstream consequences. In
other cases, they waste time by updating libraries that are not used by the software
in any way.

03 | Introduction

8

B I MONTH LY R E PORT

contrastsecurity.com8

INADEQUACIES OF LEGACY OPEN-SOURCE SECURITY
APPROACHES

Despite these increasing complications, most organizations still employ open-source
security strategies that were developed many years ago, when open-source software
was less complex, comprised a smaller part of applications, and was a part of a more
deliberate development process. Legacy software composition analysis (SCA) tools
depend on periodic static scans of either built applications or the build files in code
repositories. These scans are disruptive to modern native development processes.
Worse, they show data from just a specific point in time rather than providing
continuous analysis. The scans are out of date the first time there is a library change
or update.

But perhaps most detrimental is legacy SCA tools’ lack of visibility into which
libraries and classes are actually used by the software, how they are used, and what
version is in use. As a result, all vulnerabilities of each severity level are presented
as equally risky, when some pose no risk. Just as false positives from application
security scanning tools cause developers and security experts to waste time on
items that pose no risk, a lack of visibility into software dependencies creates false
positives when SCA tools identify CVEs in code that is not used by the software.
Both types of false positives waste an organization’s staff time and potentially can
delay the remediation of vulnerabilities that truly pose risk.

As the findings of this report clearly demonstrate, full observability of the all open-
source library content in each application is a necessity for ensuring the security of
applications for employees, partners, and customers.

METHODOLOGY OF THIS STUDY

The data in this report is based on aggregate telemetry collected by Contrast Labs
from Java, .NET, and Node applications covered by Contrast OSS and Contrast
Assess. From this data, we identify and quantify five layers of risk faced by users of
open-source software:

• Risk from active and inactive libraries

• Risk from active and inactive library classes

• Risk due to library age

• Risk due to open-source vulnerabilities

• Risk associated with licensing

9

B I MONTH LY R E PORT

contrastsecurity.com9

Many observers would be surprised at the number of third-party libraries that are
included in a typical piece of software. Contrast OSS telemetry data shows that
the average application contains 118 libraries. While nearly one-quarter (24%) of
applications contain fewer than 25 libraries, the same percentage have more than
150. At the same time, 52% of applications contain fewer than 75 libraries (Figure
1). This highlights the varying open-source risk from application to application and
speaks to the increasing complexity of software today.

04 | Library Counts: Indicative of Complexity,
not Necessarily Risk

10

B I MONTH LY R E PORT

contrastsecurity.com10

FIGURE 1

Percentage of overall appl�cat�ons by l�brary count.

0
—

2
4

2
5

—
4

9

5
0

—
74

75
—

9
9

10
0

—
12

4

12
5

—
14

9

15
0

—
17

4

17
5

—
19

9

2
0

0
—

2
2

4

2
2

5
—

2
4

9

2
5

0
—

2
74

2
75

—
2

9
9

3
0

0
—

3
2

4

3
2

5
—

3
4

9

3
5

0
+

37%

7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

8%
7%

8%
6%

4%
3% 3%

2%
3%

1%1%

6%

%
 O

F
 A

P
P

L
IC

A
T

IO
N

S

NUMBER OF LIBRARIES PRESENT

Many observers would be surprised at the number of third-party libraries that are
included in a typical piece of software. Contrast OSS telemetry data shows that
the average application contains 118 libraries. While nearly one-quarter (24%) of
applications contain fewer than 25 libraries, the same percentage have more than
150. At the same time, 52% of applications contain fewer than 75 libraries (Figure
1). This highlights the varying open-source risk from application to application and
speaks to the increasing complexity of software today.

11

B I MONTH LY R E PORT

contrastsecurity.com11

FIGURE 2

JAVA .NET

NODE TOTAL

NUMBER OF LIBRARIES PRESENT

37%

95%

17%

0%

9%

4%

0%

7%

0%

12%

0%

5%

10%

15%

20%

25%

30%

35%

40%

8%

11%

0%
1%

7%

11%

0%0%

8% 9%

0%

2%

6%

3%

6%

0%

4%
5%

0%

2%
3%

5%

0%
1%

3%3%

0%
1%

2% 2% 2%

0%
1%

4%

0%
1%

3% 2%

0%

3%
1% 1%

0%

3%

1%
2%

0%

82%

6%

0%

%
 O

F
 A

P
P

L
IC

A
T

IO
N

S

Percentage of appl�cat�ons conta�n�ng d��erent numbers of l�brar�es, by language.

FIGURE 3

Percentage of appl�cat�ons by l�brary count, by language.

L
IB

R
A

R
Y

 C
O

U
N

T

.NET

2%

11%

1%

2%

3%

3%

4%

4%

12%

2%

2%

6%

5%

1

2

3

4

5

6

7

8

9

10

11

12

13

14+

43%

NODE

6%

7%

1%

1%

5%

9%

12%

11%

9%

7%

6%

7%

4%

14%

0—99

100—199

200—299

300—399

400—499

500—599

600—699

700—799

800—899

900—999

1,000—1,099

1,100—1,199

1,200—1,299

1,300—1,399

1,400+

1%

2%

4%

1%

2%

2%

6%

9%

5%

11%

9%

JAVA

17%

3%

5%

12%

11%

0—24

25—49

50—74

75—99

100—124

125—149

150—174

175—199

200—224

225—249

250—274

275—299

300—324

325—349

350+

% OF APPS WITH LIBRARIES PRESENT

LIBRARY USAGE BY LANGUAGE

While the mean Java application contains 125 libraries, the median is 100, with 50%
of applications having fewer than that number (Figure 3). Because the mean is higher
than the median, the interpretive result means there are a select number of Java
applications with a disproportionately high rate of library vulnerabilities. Specifically,
16% of Java applications have more than 200 libraries, and 8% have more than 250.
The slf4j-api library is found in 79% of Java applications, and another 10 libraries are
found in more than 70% (Figure 4). All of the top 25 libraries are found in a majority
of Java applications. This means that an attacker who infiltrates a single library can
potentially compromise a large percentage of the world’s Java applications.

12

B I MONTH LY R E PORT

contrastsecurity.com12

FIGURE 4

Percentage of Java appl�cat�ons conta�n�ng the top 25 l�brar�es.

% OF APPS WITH
LIBRARIES PRESENT

88% 90% 92% 94% 96% 98% 100%

92%

93%

97%

93%

97%

94%

97%

98%

98%

98%

93%

93%

95%

95%

96%

98%

93%

93%

93%

93%

93%

94%

94%

95%

98%

DEBUG

MS

INHERITS

SAFE-BUFFER

MIME-DB

MIME-TYPES

QS

SEMVER

SAFER-BUFFER

ICONV-LITE

LODASH

METHODS

COOKIE

ON-FINISHED

PATH-TO-REGEXP

EE-FIRST

IPADDR.JS

MIME

NEGOTIATOR

PARSEURL

DEPD

HTTP-ERRORS

SETPROTOTYPEOF

STATUS

CORE-UTIL-IS

The streamlined infrastructure supporting .NET development is readily apparent
when one looks at library counts. While nearly 2 in 10 applications (18%) have 10 or
more libraries, a solid majority (55%) include 2 or fewer (Figure 3). By far the most
common library, System.ServiceModel.Web.dll, is present in 45% of applications. No
other library is included in as many as 20% of applications (Figure 5), but all libraries
present in more than 5% of .NET applications are controlled by Microsoft.

13

B I MONTH LY R E PORT

contrastsecurity.com13

FIGURE 5

Percentage of .NET appl�cat�ons conta�n�ng the top 25 l�brar�es.

% OF APPS WITH
LIBRARIES PRESENT

MOST POPULAR .NET LIBRARIES BY % OF APPS

6%

6%

7%

13%

8%

13%

10%

13%

13%

19%

45%

7%

8%

11%

12%

12%

17%

8%

7%

7%

7%

10%

10%

12%

16%

SYSTEM.SERVICEMODEL.WEB.DLL

SYSTEM.DIAGNOSTICS.DIAGNOSTICSOURCE.DLL

SYSTEM.MEMORY.DLL

SYSTEM.BUFFERS.DLL

SYSTEM.VALUETUPLE.DLL

SYSTEM.NUMERICS.VECTORS.DLL

SYSTEM.WEB.HTTP.DLL

MICROSOFT.OWIN.DLL

MICROSOFT.IDENTITYMODEL.TOKENS.DLL

MICROSOFT.APPLICATIONINSIGHTS.DLL

MICROSOFT.IDENTITYMODEL.LOGGING.DLL

SYSTEM.THREADING.TASKS.EXTENSIONS.DLL

MICROSOFT.OWIN.HOST.SYSTEMWEB.DLL

MICROSOFT.OWIN.SECURITY.DLL

SYSTEM.IDENTITYMODEL.TOKENS.JWT.DLL

MICROSOFT.IDENTITYMODEL.JSONWEBTOKENS.DLL

SYSTEM.RUNTIME.COMPILERSERVICES.UNSAFE.DLL

SYSTEM.TEXT.REGULAREXPRESSIONS.DLL

SYSTEM.RUNTIME.DLL

MICROSOFT.BCL.ASYNCINTERFACES.DLL

SYSTEM.GLOBALIZATION.DLL

SYSTEM.TEXT.ENCODINGS.WEB.DLL

SYSTEM.COLLECTIONS.IMMUTABLE.DLL

SYSTEM.CORE.DLL

SYSTEM.COLLECTIONS.DLL

0% 10% 20% 30% 40% 50% 60%

As noted, Node is structured in such a way that each library is smaller and more
focused. As a result, 65% of Node applications have more than 500 libraries and
20% have more than 1,000 (Figure 3). The top 25 Node libraries are all present in
92% or more of Node applications (Figure 6). If any of these libraries were to be
compromised, this would pose extraordinary risk to Node applications around the
world (a dramatically higher risk than in the case of .NET applications).

14

B I MONTH LY R E PORT

contrastsecurity.com14

FIGURE 6

Percentage of Node appl�cat�ons conta�n�ng the top 25 l�brar�es.

88% 90% 92% 94% 96% 98% 100%

DEBUG

MS

INHERITS

SAFE-BUFFER

MIME-DB

MIME-TYPES

QS

SEMVER

SAFER-BUFFER

ICONV-LITE

LODASH

METHODS

COOKIE

ON-FINISHED

PATH-TO-REGEXP

EE-FIRST

IPADDR.JS

MIME

NEGOTIATOR

PARSEURL

DEPD

HTTP-ERRORS

SETPROTOTYPEOF

STATUS

CORE-UTIL-IS

% OF APPS WITH
LIBRARIES PRESENT

92%

93%

97%

93%

97%

94%

97%

98%

98%

98%

93%

93%

95%

95%

96%

98%

93%

93%

93%

93%

93%

94%

94%

95%

98%

COMPLEXITY AS A CONTRIBUTOR TO RISK

By all accounts, the use of open-source libraries has exploded in the past several
years.6 For example, a recent study by GitHub found that 65% of all Java projects,
90% of .NET projects, and 95% of JavaScript projects (including Node) on that
platform use open-source software.7 But measuring open-source risk for a specific
application is more complicated than simply counting libraries. Indeed, this entire
study describes in great detail the fact that different libraries—and different parts of
the same library—pose different levels of risk to an organization.

Yet while there is no direct correlation between the number of libraries and the
amount of risk, the complexity that comes from a proliferation of libraries and
multilayered dependency trees can increase risk. Even without cybersecurity
considerations, organizations may benefit from deliberate efforts to declutter
application code and practice basic hygiene on open-source libraries. The
increasing focus on web applications as an attack vector for cyber criminals makes
such hygiene even more important.

15

B I MONTH LY R E PORT

contrastsecurity.com15

While the number of libraries is high, the percentage of those libraries that are
active is the more important metric and represents the first layer of open-source
risk. Overall, only 38% of libraries present in applications protected by Contrast OSS
and Contrast Assess are active (Figure 7). This means that 62% of libraries found in
applications are not used by the software in any way. Again, Node applications skew
this average somewhat. More than three-quarters (76%) of Node libraries found in
applications are inactive, while that number is 58% with Java and just 33% with .NET.

Why do applications contain so many libraries that are not used in any way? As
described above, most inactive libraries in applications occur when multiple additional
libraries are attached to an active library—but do not contribute to the functionality
for which the library was selected. This can lead to multilayered dependency trees
and increased complexity. Node packages in particular introduce many transitive
dependencies. Another reason that libraries may be inactive is that later revisions to a
piece of software might bypass libraries that were active in a prior version.

05 | Risk Layer 1: Active and Inactive Libraries

16

B I MONTH LY R E PORT

contrastsecurity.com16

ACTIVE AND INACTIVE LIBRARIES BY LANGUAGE

While the average Java application contains 125 libraries, 61% of Java applications
have fewer than 50 active libraries (Figure 8). And while all the top 25 Java libraries
are present in a majority of applications, the percent of applications where these
libraries are active is much lower (Figure 9). Only 12 of the top 25 Java libraries are
active in more than half of applications.

17

B I MONTH LY R E PORT

contrastsecurity.com17

Percent of l�brar�es act�ve
per appl�cat�on, by language.

FIGURE 7

PERCENT OF LIBRARIES THAT ARE ACTIVE

NODE TOTAL.NETJAVA

42%

67%

24%

38%

FIGURE 8

Percentage of appl�cat�ons by act�ve l�brary count, by language.

L
IB

R
A

R
IE

S

.NET

1%

6%

1%

2%

3%

3%

2%

3%

16%

2%

1%

7%

4%

1

2

3

4

5

6

7

8

9

10

11

12

13

14+

49%

NODE

61%

22%

00—99

100—199

200—299

300—399

400—499

500—599

600—699

700—799

800—899

900—999

1,000—1,099

1,100—1,199

1,200—1,299

1,300—1,399

1,400+

17%

2%

5%

1%

6%

23%

JAVA

38%

15%

9%

0—24

25—49

50—74

75—99

100—124

125—149

150—174

175—199

200—224

225—249

250—274

275—299

300—324

325—349

350+

% OF APPS WITH ACTIVE LIBRARIES

Amazingly, 49% of .NET applications have just one active library (Figure 8). The
most common library, System.ServiceModel.Web.dll, is active in 37% of applications
(Figure 10). Beyond that, only one library is active in more than 15% of applications,
and an additional five are active in more than 10%.

18

B I MONTH LY R E PORT

contrastsecurity.com18

FIGURE 9

Percentage of Java appl�cat�ons w�th act�ve l�brar�es �n the top 25,
�n descend�ng popular�ty order.

% OF APPS WITH
LIBRARY WHERE
LIBRARY IS ACTIVE

65%

70%

73%

27%

88%

52%

95%

86%

94%

70%

71%

46%

96%

93%

84%

78%

67%

37%

69%

49%

72%

47%

83%

72%

36%

SLF4J-API

SPRING-CORE

SPRING-BEANS

COMMONS-CODEC

JACKSON-CORE

JACKSON-DATABIND

SPRING-AOP

SPRING-WEB

JACKSON-ANNOTATIONS

SPRING-CONTEXT

SPRING-EXPRESSION

SPRING-WEBMVC

SPRING-TX

JBOSS-LOGGING

CLASSMATE

SNAKEYAML

COMMONS-IO

HTTPCORE

GUAVA

COMMONS-LANG3

HTTPCLIENT

JUL-TO-SLF4J

COMMONS-LOGGING

SPRING-BOOT

COMMONS-LANG

0% 20% 40% 60% 80% 100%

With Node applications, while the application count averages 537, none of the
Node applications protected by Contrast OSS and Contrast Assess have more than
300 active libraries, and 78% have fewer than 200 (Figure 8). And while the top 25
libraries are present in more than 90% of applications, the most common active
library is only present in 42% of applications (Figure 11). This reveals that many of the
numerous Node libraries found in applications are not actually used.

19

B I MONTH LY R E PORT

contrastsecurity.com19

FIGURE 10

Percentage of .NET appl�cat�ons w�th act�ve l�brar�es
�n the top 25, �n descend�ng popular�ty order.

0% 20% 40% 60% 80% 100%

% OF APPS WITH LIBRARY WHERE LIBRARY IS ACTIVE

81%

0%

96%

0%

94%

72%

55%

84%

98%

41%

84%

78%

78%

73%

96%

87%

74%

0%

42%

0%

73%

97%

100%

83%

62%

SYSTEM.SERVICEMODEL.WEB.DLL

SYSTEM.DIAGNOSTICS.DIAGNOSTICSOURCE.DLL

SYSTEM.MEMORY.DLL

SYSTEM.BUFFERS.DLL

SYSTEM.VALUETUPLE.DLL

SYSTEM.NUMERICS.VECTORS.DLL

SYSTEM.WEB.HTTP.DLL

MICROSOFT.OWIN.DLL

MICROSOFT.IDENTITYMODEL.TOKENS.DLL

MICROSOFT.APPLICATIONINSIGHTS.DLL

MICROSOFT.IDENTITYMODEL.LOGGING.DLL

SYSTEM.THREADING.TASKS.EXTENSIONS.DLL

MICROSOFT.OWIN.HOST.SYSTEMWEB.DLL

MICROSOFT OWIN SECURITY.DLL

SYSTEM.IDENTITYMODEL.TOKENS.JWT.DLL

MICROSOFT.IDENTITYMODEL.JSONWEBTOKENS.DLL

SYSTEM.RUNTIME.COMPILERSERVICES.UNSAFE.DLL

SYSTEM.TEXT.REGULAREXPRESSIONS.DLL

SYSTEM.RUNTIME.DLL

MICROSOFT.BCL.ASYNCINTERFACES.DLL

SYSTEM.GLOBALIZATION.DLL

SYSTEM.TEXT.ENCODINGS.WEB.DLL

SYSTEM.COLLECTIONS.IMMUTABLE.DLL

SYSTEM.CORE.DLL

SYSTEM.COLLECTIONS.DLL

ACTIVE AND INACTIVE LIBRARIES: TWO KINDS OF RISK

Organizations face risk from both their active and their inactive libraries. The libraries
actually used by the software can potentially have vulnerabilities that bring risk if
they are not addressed. And while

20

B I MONTH LY R E PORT

contrastsecurity.com20

FIGURE 11

Percentage of Node appl�cat�ons w�th act�ve l�brar�es �n the top 25,
�n descend�ng popular�ty order.

% OF APPS WITH ACTIVE LIBRARIES

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

24%

31%

40%

39%

33%

40%

37%

31%

31%

42%

39%

39%

41%

42%

25%

27%

39%

40%

40%

23%

40%

39%

35%

35%

36%

DEBUG

MS

INHERITS

SAFE-BUFFER

MIME-DB

MIME-TYPES

QS

SEMVER

SAFER-BUFFER

ICONV-LITE

LODASH

METHODS

COOKIE

ON-FINISHED

PATH-TO-REGEXP

EE-FIRST

IPADDR.JS

MIME

NEGOTIATOR

PARSEURL

DEPD

HTTP-ERRORS

SETPROTOTYPEOF

STATUSES

CORE-UTIL-IS

vulnerabilities in inactive libraries pose no risk, companies can waste many hours of
staff time remediating those vulnerabilities if they do not know which libraries are
active. In addition to this operational inefficiency, fixing vulnerabilities that pose no
risk can also delay action on vulnerabilities that can be exploited.

Another insight that can be gleaned from this data is that applications containing
more libraries tend to have a lower percentage of those libraries that are active.
Again, this could suggest that in these cases, legacy code needs to be cleaned up to
reduce the total code surface area and reduce risk.

Of course, both of these efforts at library hygiene require visibility into which libraries
are active and which are not.

21

B I MONTH LY R E PORT

contrastsecurity.com21

While a given library may be active in an application, only a very small part of that
library is active in many cases. On average, across all languages, only 31% of classes
in active libraries are invoked (Figure 12).

This state of affairs can be quantified by looking at library classes that are active in
an application. Classes are logical collections of code within libraries that perform
related tasks. Vulnerabilities that may exist in inactive classes in a library—even if the
library itself is active—cannot be exploited successfully by cyber criminals.

The above equates to a dramatic revelation. Assuming that 80% of application code
derives from third-party libraries,8 this means 9.4% of application code is from active
open-source library code.

The remaining 90+% is custom. Because of differences in the way they are
structured, the number of classes varies widely depending on the language being
used. On average, Java libraries contain 279 classes, .NET libraries contain 138
classes, and Node libraries contain just eight classes (Figure 13). But only 32% of
Java classes, 67% of .NET classes, and an astounding 5% of classes in Node libraries
are invoked by active libraries. Clearly, even in active libraries, much of the code is
not used by an application—especially with Java and Node.

05 | Risk Layer 2: Active and Inactive
Library Classes

22

B I MONTH LY R E PORT

contrastsecurity.com22

LIBRARY CLASSES BY LANGUAGE

For Java libraries, less than 30% of classes are active in a majority (53%) of libraries
(Figure 14). Several of the top 25 Java libraries have 37% or 38% of their classes
active, but others are in the single digits (Figure 15).

One piece of good news is that the above averages obscure the fact that 48%
of .NET libraries and 68% of Node libraries have more than 90% of their classes
active (Figure 14). However, in reality, the percentage of active classes varies widely
depending on the specific library, as shown in Figures 15 and 16.

23

B I MONTH LY R E PORT

contrastsecurity.com23

Percent of classes per
act�ve l�brary, per appl�cat�on.

FIGURE 12

% ACTIVE CLASSES

% INACTIVE CLASSES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JAVA .NET NODE TOTAL

68%

32%

33%

67%

95%

5%

69%

31%

Percent of classes per
act�ve l�brary, per appl�cat�on.

FIGURE 13

JAVA .NET NODE TOTAL

279

90

138

92

8

203

63

0.4
0

50

100

150

200

250

300

CLASSES PER LIBRARY

INVOKED CLASSES PER
LIBRARY ACTIVE LIBRARY

24

B I MONTH LY R E PORT

contrastsecurity.com24

FIGURE 14

Percentage of act�ve classes, by language.

%
 O

F
 L

IB
R

A
R

IE
S

70%

0%

10%

20%

30%

40%

50%

60%

JAVA

11%12%

4% 3%4%
7%

10%9%10%

31%

.NET

4%5% 4%

9%

48%

9%

4%3%3%

11%

NODE

4%4%
1%1%

68%

1%

9%

1%
6%5%

TOTAL

9%10%

3% 3%

23%

5%
9%

7%8%

23%

% OF ACTIVE CLASSES

<10% 10%—19% 20%—29% 30%—39% 40%—49%

50%—59% 60%—69% 70%—79% 80%—89% 90%+

25

B I MONTH LY R E PORT

contrastsecurity.com25

FIGURE 15

Percent of classes �nvoked by act�ve l�brar�es
for top 25 Java l�brar�es, �n descend�ng popular�ty order.

USAGE METRICS FOR MOST COMMON JAVA LIBRARIES
32% OF
CLASSES
USED PER
ACTIVE JAVA
LIBRARY, ON
AVERAGE

S
L

F
4

J
-A

P
I

S
P

R
IN

G
-C

O
R

E

S
P

R
IN

G
-B

E
A

N
S

C
O

M
M

O
N

S
-C

O
D

E
C

JA
C

K
S

O
N

-C
O

R
E

JA
C

K
S

O
N

-D
A

TA
B

IN
D

S
P

R
IN

G
-A

O
P

S
P

R
IN

G
-W

E
B

JA
C

K
S

O
N

-A
N

N
O

TA
T

IO
N

S

S
P

R
IN

G
-C

O
N

T
E

X
T

S
P

R
IN

G
-E

X
P

R
E

S
S

IO
N

S
P

R
IN

G
-W

E
B

M
V

C

S
P

R
IN

G
-T

X

J
B

O
S

S
-L

O
G

G
IN

G

C
L

A
S

S
M

A
T

E

22%

28%

31%

5%

34% 33%

22%
21% 21% 21%

38%
S

N
A

K
E

YA
M

L

C
O

M
M

O
N

S
-I

O

H
T

T
P

C
O

R
E

G
U

A
V

A

C
O

M
M

O
N

S
-L

A
N

G
3

H
T

T
P

C
L

IE
N

T

J
U

L-
TO

-S
L

F
4

J

C
O

M
M

O
N

S
-L

O
G

G
IN

G

S
P

R
IN

G
-B

O
O

T

C
O

M
M

O
N

S
-L

A
N

G

15%

3%

26%

7%

4%

22%

37%

17%

24%

6%

17%
14%

38%

%
 O

F
 L

IB
R

A
R

Y
 C

L
A

S
S

E
S

 U
S

E
D

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%

29%

26

B I MONTH LY R E PORT

contrastsecurity.com26

FIGURE 16

Usage metr�cs for most common .net l�brar�es

67% OF
CLASSES USED
PER ACTIVE
.NET LIBRARY,
ON AVERAGE

USAGE METRICS FOR MOST COMMON .NET LIBRARIES

120%

100%

80%

60%

40%

20%

0%

46%
48%

S
Y

S
T

E
M

.S
E

R
V

IC
E

M
O

D
E

L
.W

E
B

.D
L

L

S
Y

S
T

E
M

.D
IA

G
N

O
S

T
IC

S
.D

IA
G

N
O

S
T

IC
S

O
U

R
C

E
.D

L
L

S
Y

S
T

E
M

.M
E

M
O

R
Y.

D
L

L

S
Y

S
T

E
M

.B
U

F
F

E
R

S
.D

L
L

S
Y

S
T

E
M

.V
A

L
U

E
T

U
P

L
E

.D
L

L

S
Y

S
T

E
M

.N
U

M
E

R
IC

S
.V

E
C

TO
R

S
.D

L
L

S
Y

S
T

E
M

.W
E

B
.H

T
T

P
.D

L
L

M
IC

R
O

S
O

F
T.

O
W

IN
.D

L
L

M
IC

R
O

S
O

F
T.

ID
E

N
T

IT
Y

M
O

D
E

L
.T

O
K

E
N

S
.D

L
L

M
IC

R
O

S
O

F
T.

A
P

P
L

IC
A

T
IO

N
IN

S
IG

H
T

S
.D

L
L

M
IC

R
O

S
O

F
T.

ID
E

N
T

IT
Y

M
O

D
E

L
.L

O
G

G
IN

G
.D

L
L

S
Y

S
T

E
M

.T
H

R
E

A
D

IN
G

.T
A

S
K

S
.E

X
T

E
N

S
IO

N
S

.D
L

L

M
IC

R
O

S
O

F
T.

O
W

IN
.H

O
S

T.
S

Y
S

T
E

M
W

E
B

.D
L

L

M
IC

R
O

S
O

F
T.

O
W

IN
.S

E
C

U
R

IT
Y.

D
L

L

S
Y

S
T

E
M

.I
D

E
N

T
IT

Y
M

O
D

E
L

.T
O

K
E

N
S

.J
W

T.
D

L
L

M
IC

R
O

S
O

F
T.

ID
E

N
T

IT
Y

M
O

D
E

L
.J

S
O

N
W

E
B

TO
K

E
N

S
.D

L
L

S
Y

S
T

E
M

.R
U

N
T

IM
E

.C
O

M
P

IL
E

R
S

E
R

V
IC

E
S

.U
N

S
A

F
E

.D
L

L

S
Y

S
T

E
M

.T
E

X
T.

R
E

G
U

L
A

R
E

X
P

R
E

S
S

IO
N

S
.D

L
L

S
Y

S
T

E
M

.R
U

N
T

IM
E

.D
L

L

M
IC

R
O

S
O

F
T.

B
C

L
.A

S
Y

N
C

IN
T

E
R

F
A

C
E

S
.D

L
L

S
Y

S
T

E
M

.G
LO

B
A

L
IZ

A
T

IO
N

.D
L

L

S
Y

S
T

E
M

.T
E

X
T.

E
N

C
O

D
IN

G
S

.W
E

B
.D

L
L

S
Y

S
T

E
M

.C
O

L
L

E
C

T
IO

N
S

.I
M

M
U

TA
B

L
E

.D
L

L

S
Y

S
T

E
M

.C
O

R
E

.D
L

L

S
Y

S
T

E
M

.R
U

N
T

IM
E

.C
A

C
H

IN
G

.D
L

L

65%

71%

50%

62%

57%

81%81%82%82%

63%

72%
74%

61%

71%

0%0%0%

39%

99%

24%

31%

13%

80%

%
 O

F
 L

IB
R

A
R

Y
 C

L
A

S
S

E
S

 U
S

E
D

27

B I MONTH LY R E PORT

contrastsecurity.com27

FIGURE 17

USAGE METRICS FOR MOST COMMON NODE LIBRARIES

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

67% 65% 66% 67%

88%

80%

55% 58%

46%

100% 100% 100% 100% 100%100% 100%
98%

84%

78%
74% 74%

100%100%100%99%

D
E

B
U

G

M
S

S
A

F
E

-B
U

F
F

E
R

IN
H

E
R

IT
S

M
IM

E
-D

B

M
IM

E
-T

Y
P

E
S

Q
S

S
E

M
V

E
R

S
A

F
E

R
-B

U
F

F
E

R

M
E

T
H

O
D

S

IC
O

N
V

-L
IT

E

LO
D

A
S

H

C
O

O
K

IE

O
N

-F
IN

IS
H

E
D

P
A

T
H

-T
O

-R
E

G
E

X
P

E
E

-F
IR

S
T

IP
A

D
D

R
.J

S

N
E

G
O

T
IA

TO
R

M
IM

E

P
A

R
S

E
U

R
L

S
TA

T
U

S
E

S

H
T

T
P

-E
R

R
O

R
S

D
E

P
D

S
E

T
P

R
O

TO
T

Y
P

E
O

F

C
O

R
E

-U
T

IL
-I

S

5% OF CLASSES
USED PER
ACTIVE NODE
LIBRARY, ON
AVERAGE

%
 O

F
 L

IB
R

A
R

Y
 C

L
A

S
S

E
S

 U
S

E
D

Percent of classes �nvoked by act�ve l�brar�es for top 25 Node l�brar�es,
�n descend�ng popular�ty order.

As new vulnerabilities are discovered in libraries and added to the Common
Vulnerabilities and Exposures (CVE) database, new versions of those libraries are
released that remediate these issues. Ideally, organizations would immediately
update the library in all applications, but there are reasons this is not advisable in
some cases. Some libraries release new versions before adequate testing has been
done, resulting in unstable code. In other instances, a library update might have
downstream impacts on functionality that has nothing to do with the CVE being
addressed. Notwithstanding, organizations are further behind on library updates
than they should be.

One problem in compiling data on library age for this report is that each framework
has a unique numbering system and frequency for new library releases. As a result,
simply counting the number of versions that have been released since the version
found in a specific application does not provide an “apples to apples” comparison
across libraries. Instead, we opted to measure the chronological age of each library
version—specifically, how many days ago a specific version was released.

07 | Risk Layer 3: Library Age

28

B I MONTH LY R E PORT

contrastsecurity.com28

TYPICAL LIBRARIES ARE YEARS OUT OF DATE

Among all applications protected by Contrast OSS and Contrast Assess, the average
library has not been updated in 937 days, approximately 2.6 years (Figure 18). Among
active libraries, the news is only slightly better—892 days or 2.4 years. Further, 19%
of libraries currently in use are more than three years old, with 6% more than five
years old (Figure 19). Only 27% of active libraries are less than a year old.

The differences between languages are also clear in Figures 18 and 19. Java libraries
are nearly three years old on average—2.9 years for all libraries and 2.8 years for
active ones. And while 45% of Java libraries are less than two years old, 37% are
more than three years old. .NET libraries, on the other hand, are barely 16 months
old on average, and just 21% are more than one year old and 5% are more than two
years old. Node libraries are in between, with the average library being just under
two years behind.

29

B I MONTH LY R E PORT

contrastsecurity.com29

Average years beh�nd for l�brar�es, by language.

FIGURE 18

Y
E

A
R

S

ACTIVE LIBRARIESALL LIBRARIES

-

0.5

1.0

1.5

2.0

2.5

3.O

3.5

JAVA .NET NODE TOTAL

2.9 2.8

1.3 1.4

1.8 1.9

2.6

2

OLDER LIBRARIES INCREASE RISK AND REDUCE AGILITY

Keeping libraries up to date is a part of the basic hygiene that is critical for the
continued health of an application. This is especially important with libraries
for which a high percentage of classes is being used, and are therefore deeply
integrated into an application. Needless to say, visibility into the age of each library
and the percentage of classes in use is essential to conduct this basic maintenance
effectively.

Failure to keep libraries updated over time not only increases risk to an organization
but also makes library updates much more difficult and time-consuming when
they are finally done. When a library stays dormant in an application for multiple
years, any new vulnerability is difficult to fix because so much code has been built
over it. Updating a years-old version of a library will require significant work by the
development team.

30

B I MONTH LY R E PORT

contrastsecurity.com30

FIGURE 19

Percent of act�ve l�brar�es by number of years beh�nd, by language.

YEARS BEHIND

0%

10%

20%

30%

40%

50%

60%

27%
24%

18%
14%

8% 2%4% 2%
1% 1% 1%%

 O
F

 A
C

T
IV

E
 L

IB
R

A
R

IE
S

109876543210

JAVA .NET NODE TOTAL

Preventing and remediating software vulnerabilities is the whole point of application
security, and it is important for organizations to have a picture of vulnerabilities
present in their third-party libraries. Among applications protected by Contrast OSS
and Contrast Assess, an astounding 94% of Java applications and 90% of Node
applications have at least one CVE (Figure 20). The news is especially bad for Java,
where 45% of applications have a Critical CVE.

08 | Risk Layer 4: Vulnerabilities in Libraries

31

B I MONTH LY R E PORT

contrastsecurity.com31

Percentage of appl�cat�ons w�th
at least one CVE, by language.

FIGURE 20

JAVA

94%

.NET

7%

NODE

90%

TOTAL

71%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Overall, the average application has 34 CVEs. However, this number is misleading
because Java applications have 50 vulnerabilities on average (Figure 21). There are
just five CVEs per Node application, and just one vulnerability for every eight .NET
applications.

Drilling down to individual active libraries, the number of vulnerabilities also varies
greatly by programming language. Nearly 1 in 12 active Java libraries (8%) contain a
CVE, while just 2% of active Node libraries and 1% of active .NET libraries have one
(Figure 22).

32

B I MONTH LY R E PORT

contrastsecurity.com32

Average d�st�nct vulnerab�l�t�es
per appl�cat�on, by language.

FIGURE 21

JAVA

C
V

E
S

.NET NODE TOTAL

0

10

20

30

40

50

60

50

0.12

5

34

Average d�st�nct vulnerab�l�t�es
per appl�cat�on, by language.

FIGURE 22

JAVA .NET NODE TOTAL

8%

%
 O

F
 A

C
T

IV
E

 L
IB

R
A

R
IE

S
 W

IT
H

 C
V

E
S

1%

2%

6%

BY SEVERITY

Some vulnerabilities obviously present more risk than others, with Critical and Major
CVEs much more risky than Standard and Informational ones. Just under 5% of
active Java libraries have Critical or Major CVEs—more than half of the total CVEs
for the language (Figure 23). Critical or major CVEs are present in under 1% of active
.NET libraries and just over 1% of active Node libraries.

BY LIBRARY AGE

It is obvious that less up-to-date libraries contain more CVEs on average than newer
versions. What may be surprising is the speed at which risk increases. Looking at
Java libraries in particular, the odds of a Critical or Major CVE being present in a
library increases from 1% to 3% to 4% to 7% as library age progresses to three years
old, spiking at 48% when the library is 15 years old (Figure 24). Put another way,
updating an old library is a quick way to significantly reduce organizational risk. It
goes without saying that while CVEs in older libraries get resolved in later versions of
the library, they remain unresolved in the older version where the CVE was found.

33

B I MONTH LY R E PORT

contrastsecurity.com33

Percentage of act�ve l�brar�es w�th CVEs, by language and sever�ty.

FIGURE 23

CRITICAL MAJOR STANDARD INFORMATIONAL

%
 O

F
 A

C
T

IV
E

 L
IB

R
A

R
IE

S
 W

IT
H

 C
V

E
S

JAVA .NET NODE TOTAL

0.66%
0.03% 0.03%

0.48%

3.38%

4.41%

0.49%
1.11% 1.10%

0.26%
0.52%

0.05%

4.32%

5.77%

0.68%

FALSE-POSITIVE RATES FOR TRADITIONAL SCA TOOLS

Owners of applications protected by Contrast OSS can easily determine which CVEs
are present in inactive libraries and library classes, and therefore pose no risk to the
organization. As noted, traditional SCA tools that simply return a list of CVEs present
in an application produce a false positive every time they list a CVE in an unused
part of the application.

The aggregate data shows that 17% of Critical and Major CVEs in Java applications,
15% in .NET applications, and 80% in Node applications are in inactive libraries or
classes (Figure 25). Without this observability, organizations would spend significant
time remediating vulnerabilities that introduce zero risk. For organizations with
hundreds of applications, this can quickly tally into thousands of hours annually—
which translates into development delays.

34

B I MONTH LY R E PORT

contrastsecurity.com34

Percentage of Java l�brar�es w�th cr�t�cal and major CVEs, by l�brary age.

FIGURE 24

L
IK

E
L

IH
O

O
D

 O
F

 A
 C

R
IT

IC
A

L
 O

R

M
A

JO
R

 C
V

E

YEARS BEHIND

0%

10%

20%

30%

50%

40%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1% 3%
4%

7%
8%

13% 12%

14%

16% 15%

20%

11%

25%

33%

21%

48%

RESOLVING RISKY VULNERABILITIES, AND BEING READY
FOR NEW ATTACKS

Taking care of vulnerabilities is what application security is all about, but not every
vulnerability is created equal. Just as Critical and Major vulnerabilities rank ahead of
other ones in terms of risk, CVEs in active classes that are a part of active libraries
are the only ones that present risk to an organization. Again, full observability into
active libraries and classes, library age, and unresolved CVEs is important to reduce
risk and maximize efficiency.

That said, it should be noted that all CVEs that are logged are discovered by a very
small number of volunteer security researchers—a group that is badly outnumbered
by cyber criminals. In actuality, it is very likely that there are many more undiscovered
vulnerabilities than discovered ones. While this report focuses on the risks we know
about, it is important to remember that runtime protection is critical to prevent
exploitation of unknown vulnerabilities.

35

B I MONTH LY R E PORT

contrastsecurity.com35

SCA false-pos�t�ve rates for Java, .NET, and Node appl�cat�ons.

FIGURE 25

% OF CVES THAT ARE FALSE POSITIVES

% OF CRITICAL AND MAJOR CVES THAT ARE FALSE POSITIVES

JAVA .NET NODE TOTAL

23%

17%
13%

15%

69%

80%

23%
18%

Although open-source code is free to use, it is not always free to use without
restriction. These restrictions are determined by the type of license associated with
the library. Licenses fall into two categories: permissive and copyleft. Permissive
licenses place no restriction on the use of the software and include Apache, the
most common Java and .NET license, and MIT, the most common Node license (see
Figure 26).

Copyleft licenses, on the other hand, claim that the code is copyrighted and can
only be used if the resulting software product is released as open source. This, of
course, introduces significant operational risk for organizations. Including even one
library that uses a copyleft license in a library’s dependency tree technically renders
the entire library subject to copyleft restrictions, and libraries can potentially be
mislabeled in this regard.9

Versions of the General Public License (GPL) are the most popular copyleft licenses,
and Contrast Labs rates all versions of GPL as high risk. Other copyleft licenses
bring moderate risk according to Contrast Labs, including Lesser GPL (LGPL),
Mozilla Public License (MPL), and Eclipse Public License (EPL).

Because of this risk, it is concerning that 69% of Java applications and 33% of Node
applications have at least one high-risk license (Figure 27a and 27b). In addition,
95% of Java applications and 70% of Node applications have at least one license
of unknown or variable risk. One specific copyleft license, GPL 2.0, is present in
35% of all applications. Although the .NET language tightly controls its licenses
and its applications have no high- or moderate-risk licenses, 99% of organizations
represented in the dataset have at least one application containing a high-risk license.

09 | Risk Layer 4: Licensing Risk

36

B I MONTH LY R E PORT

contrastsecurity.com36

High-risk licenses are only used with 2% of Java libraries and a tiny fraction of 1% of
Node libraries. It is entirely possible that the libraries associated with these licenses
are inactive, and organizations may not even be aware that these licenses are in
their applications. Yet, high-risk licenses pose significant risk, and this is yet another
reason that full observability of the open-source software environment is critical for
all organizations.

37

B I MONTH LY R E PORT

contrastsecurity.com37

Percentage of appl�cat�ons and l�brar�es w�th the top 10 open-source l�censes.

FIGURE 26

% OF LIBRARIES % OF APPLICATIONS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

APACHE-2
.0

M
IT

IS
C

EPL-
1.0

EPL-
2.0

CDDL-
1.1

G
PL-

2.0
-O

NLY

BSD-3
-C

LAUSE
LG

PL-
2.1-

O
NLY

BSD-2
-C

LAUSE

41%

79%
80%

22%

2% 2% 2% 1% 1% 1% 1% 1%

48%
49%

35%
36%

21%

31%
35%

6%

38

B I MONTH LY R E PORT

contrastsecurity.com38

SCA false-pos�t�ve rates for Java, .NET, and Node appl�cat�ons.

FIGURE 27A

JAVA LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

.NET LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

2%

8%

67%

22%

69%
99%

81%
100%

100%
98%

100%

100%

95%

39

B I MONTH LY R E PORT

contrastsecurity.com39

L�cense usage by r�sk level and language.

FIGURE 27B

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

0% 20% 40% 60% 80% 100%

HIGH

MODERATE

LOW

UNKNOWN/VARIES

NODE LICENSE USAGE

100%
99%

92%
70%

33%

9%

1%

28%

52%

LICENSE USAGE

100%
99%

92%
70%

33%

1%

28%

52%

9%

The 2021 State of Open-source Security Report leverages data from real
applications to identify trends in the quest to secure the libraries that form an
integral part of most applications today. The report highlights five layers of risk faced
by every organization that develops software: active and inactive libraries, active and
inactive classes, library age, vulnerabilities in libraries, and licensing risk.

An increasingly efficient software factory is the engine behind the ongoing digital
transformation that is remaking how companies operate and interact with their
customers. This long-standing trend accelerated its pace during the COVID-19
pandemic. As many as 79% of executives who responded to one survey said that
the pandemic had resulted in increased budgets for digital transformation.10 Another
survey found that consumers are three times more likely to say that 80% of their
customer interactions are digital in nature than before the coronavirus.11

From an application security perspective, open-source libraries are one of the four
elements of the software supply chain, each of which must receive equal and critical
priority:

• What you write: Custom code developed in-house

• What you build with: Software development tools

• What you buy: Off-the-shelf Software-as-a-Service (SaaS) applications

• What you use: Third-party libraries

10 | Conclusion

40

B I MONTH LY R E PORT

contrastsecurity.com40

41

B I MONTH LY R E PORT

contrastsecurity.com41

WHAT YOU WRITE12

• 60% release code multiple times per
day; 80% do so multiple times per week

• 79% still under pressure for more speed

• 55% skip security processes to meet
SDLC deadlines

• Less than 50% of application security
integrated with CI/CD tools

WHAT YOU BUY

• SaaS market to grow 25% by 202213

• 70% indicate “uninformed or misleading
claims about security” in a SaaS solution
were cause of dissatisfaction14

• 95% of businesses host sensitive data in
SaaS solutions15

WHAT YOU BUILD WITH

• Developers have access to literally
1,000+ software development tools

• Work-from-home environments create
greater security risks for thousands of
pieces of software running with high
privilege

WHAT YOU USE

• 90% of applications rely on third-party
libraries that comprise up to 70% of
code16

• Applications on GitHub have an average
of 200 dependencies17

• 73% of applications have a vulnerability
traceable to third-party code

There are four pr�mary components to the “assembly l�ne” �n the software factory.

FIGURE 28

If any of these elements is missing from an organization’s application security
strategy, the other elements are weakened, and risk is increased. When it comes
to open-source libraries, they inject code into the software factory and introduce
significant risk. The fact that so many applications have a library with a high-risk
license attests to the fact that too many organizations have an incomplete view of
what libraries exist in their applications. This means that they are unable to provide
the protection that those applications need.

42

B I MONTH LY R E PORT

contrastsecurity.com42

KEY TAKEAWAYS

In this context, it is important that organizations take a holistic, methodical approach
to open-source security. Factors they should consider include:

• Set comprehensive policies for libraries, frameworks, and licensing. Defining and
enforcing limitations on the components allowed in an application can prevent
libraries with GPL licenses or outdated libraries from being added. Likewise,
policies for updating existing libraries can decrease the odds of vulnerabilities
and save extra work in the future.

• Establish continuous observability. As we have said repeatedly, full visibility into
which libraries and classes are active, how old they are, what CVEs they hold,
and what licenses they require is critical for prioritization of remediation and
reduction of risk. Since only active libraries and classes pose risk, this knowledge
significantly narrows the scale of needed remediation.

• Embed controls in continuous integration/continuous deployment (CI/CD)
processes. This can keep risky libraries and licenses from entering an application
inadvertently by automating policy enforcement.

As the economy and public infrastructure become increasingly reliant on software,
applications are an increasingly attractive target for cyber criminals. For the
components of that software that come from open-source libraries, it is critical
that organizations have the detailed data they need to make their software both
secure and functional. This level of visibility and control is only available with tools
from Contrast Security. Organizations that leverage these tools are increasing the
efficiency of their development efforts while making them more secure.

Jeff brings more than 20 years of security leadership
experience as Co-Founder and Chief Technology
Officer of Contrast. Previously, Jeff was Co-Founder
and Chief Executive Officer of Aspect Security,
a successful and innovative application security
consulting company acquired by Ernst & Young. Jeff
is also a founder and major contributor to OWASP,
where he served as Global Chairman for eight years
and created the OWASP Top 10, OWASP Enterprise
Security API, OWASP Application Security Verification
Standard, XSS Prevention Cheat Sheet, and many
other widely adopted free and open projects. Jeff
has a BA from the University of Virginia, an MA from
George Mason, and a JD from Georgetown.

David is an experienced application security
professional with over 20 years in cybersecurity. In
addition to serving as the chief information security
officer, David leads the Contrast Labs team that is
focused on analyzing threat intelligence to help
enterprise clients develop more proactive approaches
to their application security programs. Throughout his
career, David has worked within multiple disciplines in
the security field—from application development, to
network architecture design and support, to IT security
and consulting, to security training, to application
security. Over the past decade, David has specialized
in all things related to mobile applications and
securing them. He has worked with many clients across
industry sectors, including financial, government,
automobile, healthcare, and retail. David is an active
participant in numerous bug bounty programs.

JEFF WILLIAMS
CTO AND CO-FOUNDER,
CONTRAST SECURITY

DAVID LINDNER
CHIEF INFORMATION
SECURITY OFFICER,
CONTRAST SECURITY

Contributors

43

B I MONTH LY R E PORT

contrastsecurity.com43

Brian possesses nearly 20 years of experience in
various roles in IT and over a decade in application
development and security. In addition to teaching a
full load of classes at Union University, Brian serves
as a part-time management consultant and advisor
for Contrast Labs. He worked on the Trustworthy
Computing team at Microsoft and served as a project
lead and active contributor for SAMM v1.1-2.0 and
OWASP Top 10 2017. He is a popular speaker at
numerous conferences and online events, having
presented at InfoSec World, Cloud Security World, and
numerous OWASP conferences and meetings. Brian
is also an author of various papers and is currently
researching writing a book on application security. He
holds a long list of cybersecurity and IT certifications
as well as a master in business administration and
bachelors in computer science from Union University.

Katharine is a driving force in developing and
building data analytics frameworks for Contrast—
including Contrast Labs—and turning data into
actionable narratives and insights for internal and
external customers. Katharine worked as an analyst,
consultant, and project manager in both private and
nonprofit organizations. Before launching a career
in data science, Katharine worked for three years
as a mathematics teacher in the Teach for America
program. Katharine holds undergraduate and graduate
degrees from The Johns Hopkins University.

BRIAN GLAS
ASSISTANT PROFESSOR OF
COMPUTER SCIENCE, UNION
UNIVERSITY

KATHARINE WATSON
SR. DATA ANALYST AND
DATA SCIENTIST,
CONTRAST SECURITY

44

B I MONTH LY R E PORT

contrastsecurity.com44

Patrick founded and serves as the editor in chief for
the Inside Appsec podcast and leads the content
marketing and PR/communications team at Contrast.
He has more than a decade and a half of experience in
various senior marketing and research roles within the
cybersecurity sector and is the recipient of numerous
corporate and industry awards. After leaving the
corporate world to start his own agency, Patrick joined
Fortinet to lead content marketing and research. His
many duties included serving as the editor in chief for
The CISO Collective. Patrick’s roots in cybersecurity
go back to Symantec, where he spent nearly a decade
in senior marketing roles of increasing scope and
responsibility. While at Symantec, Patrick served as the
editor in chief for CIO Digest, an award-winning digital
and print publication containing strategies and insights
for the technology executive.

MHM ContentSource specializes in marketing research
and writing projects for clients across the technology
sector. Mark has 15 years of experience in research and
content marketing across the technology sector, as
both an employee and a consultant. He has authored
numerous research reports, white papers, and magazine
features and produced dozens of marketing videos
and a podcast series. His work has been published
by leading technology brands such as Symantec,
LivePerson, PRO Unlimited, Finastra, Fortinet, Lastline,
and Contrast Security, among others.

PATRICK SPENCER,
PH.D.
EDITOR IN CHIEF,
INSIDE APPSEC PODCAST

HEAD OF CONTENT AND
PR/COMMUNICATIONS,
CONTRAST SECURITY

MARK MULLINS
FOUNDER AND PRINCIPAL,
MHM CONTENTSOURCE

45

B I MONTH LY R E PORT

contrastsecurity.com45

Pauline oversees the product management strategy
and execution for Contrast OSS. She spent over a
decade developing applications in Java, .NET, and
Node.js and has served in various team and project
leadership positions throughout her career. The
breadth of these experiences gives Pauline a keen
understanding of the opportunities and risks that
open-source code poses. She holds a computer
science degree from Queens University in Belfast.

Joe Coletta oversees product marketing strategy
and execution for Contrast OSS and is focused
on open-source security. Joe has worked in the
application security space for over a decade and has a
comprehensive view of all aspects, starting in customer
success before migrating to go-to-market strategy. Joe
leverages his consultative experience with application
security practitioners to highlight solutions that solve
key customer problems.

PAULINE LOGAN
PRODUCT MANAGER
CONTRAST SECURITY

JOE COLETTA
SR. PRODUCT MARKETING
MANAGER
CONTRAST SECURITY

46

B I MONTH LY R E PORT

contrastsecurity.com46

47

B I MONTH LY R E PORT

contrastsecurity.com47

1 Sage McEnery, “How much computer code has been written?” Medium, July 18, 2020.
2 Shivam Srivastava, et al., “Developer Velocity: How software excellence fuels business performance,” McKinsey & Company, April 20, 2020.
3 Ibid.
4 Josephine Wolff, “The SolarWinds Hack Is Unlike Anything We Have Ever Seen Before,” Slate, December 18, 2020.
5 “Data Breach Investigations Report, 2020,” Verizon, April 2020.
6 Forrester found a 40% increase in the use of open-source code in one year; see Amy DeMartine and Jennifer Adams,
 “Application Security Market Will Exceed $7 Billion by 2023,” Forrester, updated March 29, 2019.
7 “Securing the world’s software,” GitHub Octoverse, accessed March 26, 2021.
8 See Stephen Gates, “Code Exposure: The Vulnerabilities in Your Code & Where They Originate,” Security Boulevard, July 10, 2019.
9 Thomas Claburn, “Ruby off the Rails: Code library yanked over license blunder, sparks chaos for half a million projects,” The Register, March 25, 2021.
10John Koetsier, “97% Of Executives Say Covid-19 Sped Up Digital Transformation,” Forbes, September 10, 2020.
11 “How COVID-19 has pushed companies over the technology tipping point—and transformed business forever,” McKinsey & Company, October 5, 2020.
12 “The State of DevSecOps Report,” Contrast Security, November 2020.
13“Gartner Forecasts Worldwide Public Cloud Revenue to Grow 6.3% in 2020,” Gartner, July 23, 2020.
14 Rich Cracknell, et al., “Securing software as a service,” McKinsey & Company, September 2019.
15 Alex Powell, “The biggest mistakes in SaaS security,” Cloud Security Alliance, February 8, 2021.
16 Manolo Edge, “3rd party libraries, are they a risk?” DEV, January 15, 2020.
17 Cathy Zhou, “The State of the Octoverse 2019,” GitHub, November 6, 2019.

https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://slate.com/technology/2020/12/solarwinds-hack-malware-active-breach.html
https://enterprise.verizon.com/resources/reports/dbir/
https://www.forrester.com/report/Application+Security+Market+Will+Exceed+7+Billion+By+2023/-/E-RES144054
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://securityboulevard.com/2019/07/code-exposure-the-vulnerabilities-in-your-code-where-they-originate/
https://www.theregister.com/2021/03/25/ruby_rails_code/
https://www.forbes.com/sites/johnkoetsier/2020/09/10/97-of-executives-say-covid-19-sped-up-digital-transformation/?sh=438ce51e4799
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.contrastsecurity.com/hubfs/DocumentsPDF/The-State-of-DevSecOps_Report_Final.pdf?hsCtaTracking=a203b826-65b7-4b82-85de-60d5c1fce5e8%7C920d6cec-5ad9-4b95-8e2e-c2c1c6ec7660
https://www.gartner.com/en/newsroom/press-releases/2020-07-23-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-6point3-percent-in-2020
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Risk/Our%20Insights/Securing%20software%20as%20a%20service/Securing-software-as-a-service-vF.pdf
https://cloudsecurityalliance.org/blog/2021/02/08/how-to-avoid-the-biggest-mistakes-with-your-saas-security/
https://dev.to/nombrekeff/3rd-party-libraries-are-they-a-risk-2emp
https://github.blog/2019-11-06-the-state-of-the-octoverse-2019/

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write
and release secure application code faster. Embedding code analysis and attack prevention directly
into software with instrumentation, the Contrast platform automatically detects vulnerabilities while
developers write code, eliminates false positives, and provides context-specific how-to-fix guidance
for easy and fast vulnerability remediation. Doing so enables application and development teams to
collaborate more effectively and to innovate faster while accelerating digital transformation initiatives.
This is why a growing number of the world’s largest private and public sector organizations rely on
Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

