

INFOGRAPHIC

Observability of **Inactive Code**

Not All Libraries in an Application are Used!

OF ALL LIBRARIES PRESENT IN 6 2 OF ALL LIBRARIES PRESENT IN APPLICATIONS ARE INACTIVE (76% FOR NODE, 58% FOR JAVA,

And Not All Parts of Active Libraries are Invoked

OF ALL CLASSES IN ACTIVE LIBRARIES ARE INACTIVE (95% FOR NODE, 68% FOR JAVA, 33%

Not Every Library Poses the Same Level of Risk

ARE PRESENT IN A MAJORITY OF **APPLICATIONS. HOWEVER, ONLY 12** OF THE 25 ARE ACTIVE IN FEWER THAN HALF OF APPLICATIONS.

ALL OF THE TOP 25 JAVA LIBRARIES

TOP 25 NODE LIBRARIES

OF .NET APPLICATIONS HAVE JUST ONE ACTIVE LIBRARY.

ARE PRESENT IN 90+% OF APPLICATIONS. HOWEVER, MOST **COMMON LIBRARY IS ONLY IN 42%** OF APPLICATIONS.

Key Takeaways

POSE NO RISK.

VULNERABILITIES IN INACTIVE LIBRARIES AND CLASSES

TRADITIONAL SCA TOOLS DO NOT DIFFERENTIATE ACTIVE **VS. INACTIVE CODE.**

OBSERVABILITY IS KEY TO PRIORITIZING REMEDIATION

- FOR SECURITY AND EFFICIENCY.
- CONTRAST OSS PROVIDES THE OBSERVABILITY AND DEEP INSIGHTS NEEDED TO PINPOINT WHICH OPEN-SOURCE **VULNERABILITIES POSE RISK—AND WHICH ONES DO NOT.**

GET THE FULL 2021 STATE OF OPEN-SOURCE

SECURITY REPORT TODAY.

