
Locking Down
Docker Security with
Instrumentation in
the Contrast Platform

SO LU TI O N B R I E F

contrastsecurity.com

Use of containers within DevOps environments
continues to grow in popularity. And while
containerization solutions like Docker offer a great
deal of convenience to DevOps teams, they do not
provide any inherent application security and can
even introduce their own particular vulnerabilities

that cannot be protected by traditional means. An
instrumentation-based approach to application
security—such as the Contrast Application Security
Platform—can address the specific problems
associated with containerization in general and
Docker in particular.

According to Gartner, “By 2023, more than 70% of
global organizations will be running more than two
containerized applications in production, up from
less than 20% in 2019.”2 Whether an application
is built in the cloud, on-premises, or in hybrid
environments, containerization has clear advantages
in terms of scalability, portability, and continuous
development and improvement.3

Without question, containers accelerate and simplify
application deployment. But individual applications
still must be assessed and protected within any
container environment. The tricky part is that
containers have short life spans—which means that
monitoring them (especially during runtime) can be
extremely difficult. And another key issue comes
from a lack of visibility into ever-changing container
environments.5 And on top of complicating security
effectiveness, containers introduce their own unique
vulnerabilities that can cause problems across the
entire life cycle of the application.

Executive Overview

Containers Introduce Their
Own Security Risks

2

SOLUTION B R I E F

Container usage
for production
deployments in
enterprises is still
constrained by
concerns regarding
security, monitoring,
data management,
and networking.1

contrastsecurity.com2

Therefore, in any container-based DevOps
environment, organizations must solve three main
problems:

1. Securing the custom code running within each
container

2. Protecting open-source code and software
composition that leverages multiple libraries

3. Ensuring security throughout the software
development life cycle (SDLC), including rapid
iterations of development and testing

DOCKER IS POPULAR, BUT NO LESS
PROBLEMATIC

Docker is widely considered to be the most popular
containerization technology in DevOps environments
today. Between November 2019 and July 2020, Docker
saw a dramatic swell in consumption—almost doubling
total pulls in a little over six months (from 130 billion
to 242 billion).6 But with specific regard to Docker,
misconfigurations can downgrade the level of overall
application security and introduce new vulnerabilities.7

A popular feature of the Docker framework—Docker
images—has been a main source of critical security
issues. Docker images are essentially ready-made
gobbets of open-source code that run services
or applications, with each image containing the
dependencies, libraries, and other periphery required
by the code. Stand-alone images become foundational
building blocks, requiring a minimum of tweaking to
make them fit for purpose, which significantly reduces
overall development times.8 Unfortunately, researchers
have found a significant number of security
vulnerabilities within Docker images.9

For years now, hackers have been able to insert
malicious code into Docker images on the Docker
Hub.11 In other cases, such as the core OpenJDK
container, well-intentioned groups have accidentally
introduced vulnerabilities into their own legitimate
containers. But lack of patching is the main reason
for ongoing vulnerabilities with Docker images. Many
container images simply haven’t been updated in the
last five to seven years. This is a problem, however, as

3

SOLUTION B R I E F

The number of
organizations that
have containerized
at least half of their
applications grew by
22% over the previous
six months.4

Even in the certified
channel (where
Docker images
receive a great deal of
scrutiny), researchers
found images with
security vulnerabilities
described as “high.”10

contrastsecurity.com3

container images require continual updates and auditing to keep pace with the constant flow of new exploits and
security benchmarks.12

Hackers also find new methods to escalate access and invoke Docker commands. Remote container command
execution is especially worrisome. If left open to the internet without the proper configurations, container
ecosystems become very vulnerable.13

There is also the domino effect to consider. A single compromised Docker container can threaten all other
containers as well as the underlying host.14 Last year, for example, security researchers discovered a cryptojacking
worm that propagated using containers in the Docker Engine and spread to more than 2,000 vulnerable Docker
hosts.15

4

SOLUTION B R I E F

contrastsecurity.com4

Some organizations use traditional approaches to manage Docker vulnerabilities—such as adding siloed
tools to cover individual risk exposures. But securing containers in this way is a non-starter. Existing security
methods are unsuitable for addressing container-based risks.16 And even if the container itself is somehow
protected by these means, the container is no longer secure once an insecure application is placed inside it.

Another previously established technique for protecting existing containers is the sidecar approach. The main
container processes data while a sidecar is called at the same time to do additional processing. The sidecar
makes it possible to move tasks such as logging or perhaps input scanning away from the core processing
container, speeding up its time to results. However, this design pattern does not solve the need to observe
container-level application flows or to access information at the container level. This would need to occur
inside the container’s implementing code in a way that is not visible from the outside.

In sum, while the sidecar is able to correctly perform its additional processing, the container itself is
compromised while the sidecar simply watches. As a result, the main container would be hacked or tricked to
return sensitive data to the attacker based on what was being exploited. And beyond security issues, use of
sidecars can also quickly lead to problems with application stability and performance.17

QUESTIONABLE TESTING LEADS TO COSTLY REPAIRS LATER

Ineffective security testing in development also creates bigger problems downstream. Organizations are
beginning to realize that many production runtime security failures are caused by missed security best
practices in development. For that reason, more than half (57%) of organizations report that they are more
worried about their build and deploy phases, with misconfigurations and vulnerabilities cited as areas posing
the greatest risk.18

Cost is also a critical factor to fixing bugs after the design phase. Specifically, it is six times more expensive to
fix a bug found during implementation; 15 times more if it is identified in testing; and 100 times more once the
code is in production.19

Traditional Security Cannot Address Container Vulnerabilities

5

SOLUTION B R I E F

contrastsecurity.com5

To address these problems, organizations need to “shift left” and incorporate effective application security
from the very beginning—during the build stage of the SDCL. This requires a rethink of traditional application
security where coding must be repeatedly halted and restarted for legacy application security testing.

To ensure continuous deployment of Docker-containerized applications, organizations need an application
security platform that extends continuous security assessment and protection across build, deployment,
and runtime environments. Contrast’s instrumentation-based platform achieves this by managing security
from within the application itself while reducing the workflow burdens on limited staff. It also reduces costs
by helping DevOps teams find and fix problems during development, while providing embedded security
that scales across all parts of the containerized code—including open-source components. Finally, it helps
organizations simplify their infrastructure by eliminating dependency on add-on, siloed approaches to
application security.

DevOps environments will only become more dynamic and complex as time progresses. To ensure that
security can keep pace with the speed of business, organizations need to embrace the need for observability
across the distributed systems they build. To protect Docker containerized applications, organizations must
integrate security into the application itself using instrumentation. By placing specialized instrumentation
sensors throughout the code itself, organizations can gain comprehensive visibility, monitoring, and
automation capabilities across all parts of the application and embed security across all phases of the SDLC.

Instrumentation-based application security delivers continuous, automated, real-time identification of
vulnerabilities and verification of their remediation. This approach is effective because it operates within the
container, protecting the container as well as the application or service hosted inside.21

The instrumentation-based Contrast Application Security Platform enables companies to align application
security with their container efforts. It supports:

• Extending application security into containers without acquiring/managing more silo-based security tools
• Heterogeneous support for managing containers (e.g., Puppet, Chef, Ansible)
• Multilanguage support for each container
• Coverage of both custom and open-source code
• Fast and easy deployment

Instrumentation-Based Application Security for Docker

The Contrast Application Security Platform Contains
Docker Security Risks

Container security should leverage the same strengths
that containers bring to DevOps processes—it needs to
be both dynamic and flexible.20

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write
and release secure application code faster. Embedding code analysis and attack prevention directly
into software with instrumentation, the Contrast platform automatically detects vulnerabilities while
developers write code, eliminates false positives, and provides context-specific how-to-fix guidance
for easy and fast vulnerability remediation. Doing so enables application and development teams to
collaborate more effectively and to innovate faster while accelerating digital transformation initiatives.
This is why a growing number of the world’s largest private and public sector organizations rely on
Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

1 Ajmal Kohgadai, “Gartner best practices for Kubernetes & container security,” StackRox, June 25, 2019.
2 Robert Christiansen, “More enterprises are using containers; here’s why,” CIO, August 26, 2019.
3 Ali Golshan, “Survey Reveals Rapid Growth in Kubernetes Usage, Security Still a Concern,” DZone, August 30, 2019.
4 Ajmal Kohgadai, “6 Container Adoption Trends of 2020,” StackRox, March 4, 2020.
5 Ajmal Kohgadai, “Docker Container Security 101: Risks and 33 Best Practices,” StackRox, September 13, 2019.
6 John Kreisa, “Docker Index: Dramatic Growth in Docker Usage Affirms the Continued Rising Power of Developers,” Docker, July 30, 2020.
7 “Docker Security Cheat Sheet,” OWASP, accessed September 10, 2020.
8 “Docker Hub harboring harm — research,” TechHQ, June 17, 2020.
9 “Docker Hub harboring harm — research,” TechHQ, June 17, 2020.
10 “Docker Hub harboring harm — research,” TechHQ, June 17, 2020.
11 Bill Doerrfelt, “Common Container and Kubernetes Vulnerabilities,” Container Journal, August 3, 2020.
12 Bill Doerrfelt, “Common Container and Kubernetes Vulnerabilities,” Container Journal, August 3, 2020.
13 Bill Doerrfelt, “Common Container and Kubernetes Vulnerabilities,” Container Journal, August 3, 2020.
14 Ajmal Kohgadai, “Docker Container Security 101: Risks and 33 Best Practices,” StackRox, September 13, 2019.
16 Erik Costlow, “Security Concerns Remain with Containers and Kubernetes Per New Report,” Security Boulevard, March 11, 2020.
17 Apurva Dave, “5 Things We’ve Learned About Monitoring Containers,” DZone, August 14, 2017.
18 Ali Golshan, “Survey Reveals Rapid Growth in Kubernetes Usage, Security Still a Concern,” DZone, August 30, 2019.
19 Mukesh Soni, “Defect Prevention: Reducing Costs and Enhancing Quality,” iSixSigma, accessed April 16, 2020.
20 Tim Ferrill, “9 container security tools, and why you need them,” CSO, August 4, 2020.
21 Erik Costlow, “Security Concerns Remain with Containers and Kubernetes Per New Report,” Security Boulevard, March 11, 2020.

https://www.stackrox.com/post/2019/06/gartner-best-practices-for-securing-containers-and-kubernetes-in-production/
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html
https://dzone.com/articles/survey-reveals-rapid-growth-in-kubernetes-usage-se
https://www.stackrox.com/post/2020/03/6-container-adoption-trends-of-2020/
https://www.stackrox.com/post/2019/09/docker-security-101/
https://www.docker.com/blog/docker-index-dramatic-growth-in-docker-usage-affirms-the-continued-rising-power-of-developers/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://techhq.com/2020/06/docker-hub-harboring-harm-researchdocker-hub-cybersecurity-flaws-dangerous-research/
https://techhq.com/2020/06/docker-hub-harboring-harm-researchdocker-hub-cybersecurity-flaws-dangerous-research/
https://techhq.com/2020/06/docker-hub-harboring-harm-researchdocker-hub-cybersecurity-flaws-dangerous-research/
https://containerjournal.com/topics/container-security/common-container-and-kubernetes-vulnerabilities/
https://containerjournal.com/topics/container-security/common-container-and-kubernetes-vulnerabilities/
https://containerjournal.com/topics/container-security/common-container-and-kubernetes-vulnerabilities/
https://www.stackrox.com/post/2019/09/docker-security-101/
https://securityboulevard.com/2020/03/security-concerns-remain-with-containers-and-kubernetes-per-new-report/
https://dzone.com/articles/5-things-weve-learned-about-monitoring-containers
https://dzone.com/articles/survey-reveals-rapid-growth-in-kubernetes-usage-se
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
https://www.csoonline.com/article/3568641/9-container-security-tools-and-why-you-need-them.html
https://securityboulevard.com/2020/03/security-concerns-remain-with-containers-and-kubernetes-per-new-report/

