
AppSec Solution
Guide for Complying
with New NIST SP
800-53 IAST and
RASP Requirements

SO LU TI O N B R I E F

contrastsecurity.com

The new NIST Cybersecurity Framework contains a
Special Publication, NIST SP 800-53 Revision 51 that
includes the following:

• SA-11(9), Developer Security Testing and
Evaluation: “Require the developer of the
system, system component, or system service to
employ interactive application security testing
[IAST] to identify flaws and document results.”2

• SI-7(17), Software, Firmware, and Information
Integrity: “Implement [Assignment: organization-
defined controls] for application self-
protection at runtime.”3 This section mandates
implementation of RASP technology to “reduce
the susceptibility of software to attacks by
monitoring its inputs, and blocking those inputs
that could allow attacks.”4

These requirements are a recognition that, as a result
of an increasing attack volume5 driven by automation,
security instrumentation is critical to assessing the
security risk of specific software vulnerabilities.
In addition, instrumentation can improve DevOps
efficiency by minimizing security-related delays to the
development cycle.

When combined
with analysis
techniques, interactive
application security
identify a broad
range of potential
vulnerabilities and
confirm control
effectiveness.6

New application security (AppSec) standards
by the National Institute of Standards and
Technology (NIST) are a recognition that legacy
AppSec tools are inadequate for enabling timely
delivery of secure applications that address the
current advanced threat landscape. Specifically,
the guidance calls for the adoption of security
instrumentation in the form of interactive
application security testing (IAST) and runtime
application self-protection (RASP) tools. NIST

recognizes that this technology is vital for
reducing alert noise, minimizing interruptions
to the development cycle, and prioritizing the
vulnerabilities that pose the greatest risk for a
particular organization. These benefits cascade to
the everyday lives of developers and security team
members, enabling them to be more effective in
their jobs while improving their overall application
security posture.

Executive Overview

2

SOLUTION B R I E F

contrastsecurity.com2

3

SOLUTION B R I E F

contrastsecurity.com3

These new requirements will have significant impact across all industries, as the NIST Cybersecurity
Framework is quickly becoming the default standard in the United States. All U.S. federal government agencies
are now mandated to comply with NIST, and many state and local governments have followed suit.7 In the
private sector, it is projected that 50 percent of U.S. organizations will follow the NIST framework by the end of
this year.8

This wide adoption means that the new NIST guidelines will likely set a standard for other frameworks. For example,
organizations that measure themselves against the North American Electric Reliability Corporation (NERC),
the Federal Information Security Management Act of 2002 (FISMA), or the Federal Risk and Authorization
Management Program (FedRAMP) can expect to have IAST and RASP requirements in the near future.

The Influence of NIST Continues to Grow

Runtime application
self-protection
[RASP] technology
can reduce the
susceptibility of
software to attacks by
monitoring its inputs,
and defending APIs
that are vulnerable
to those inputs rather
than using simple
pattern matching.9

DEVELOPER TESTING AND EVALUATION
– INTERACTIVE APPLICATION SECURITY
TESTING

Require the developer of the system, system
component, or system service to employ interactive
application security testing tools to identify flaws and
document the results.

Discussion: Interactive (also known as instrumentation-
based) application security testing is a method of
detecting vulnerabilities by observing applications as
they run during testing. The use of instrumentation
relies on direct measurements of the actual running
applications, and uses access to the code, user
interaction, libraries, frameworks, backend connections,
and configurations to measure control effectiveness
directly. When combined with analysis techniques,
interactive application security testing can identify a
broad range of potential vulnerabilities and confirm
control effectiveness. Instrumentation-based testing
works in real time and can be used continuously
throughout the system development life cycle.10

IAST technology detects vulnerabilities by observing
applications as they run during testing—and can be
used throughout the software development life cycle.
Additionally, using instrumentation-based testing
works in real time and can be used continuously
throughout the system development life cycle.

Implications of SA-11(9):
Developer Security Testing
and Evaluation

4

SOLUTION B R I E F

For 43% of
organizations, false
positives comprise >20%
of alerts. 15% report that
>50% of security alerts
are false positives.11

contrastsecurity.com4

TAKEAWAYS FOR SECURITY TEAMS

The increasingly complex threat landscape means that
security teams must address significant risk across
the organization. This requires a strategic approach
that prioritizes threats and vulnerabilities according to
the risk they pose to the organization. One thing that
hampers such a strategic approach is alert noise in a
world of increasing volume. It is no longer possible for
security team members to comb through every alert
manually. Complying with the new standards will make
security teams more productive—and less stressed.

• Continuous visibility. The instrumentation
approach ensures continuous monitoring
throughout the software development life cycle,
enabling real-time visibility for the security team
without having to interrupt developers to do a scan.

• Security accuracy eliminates false positives and identifies false negatives. Security instrumentation
identifies only vulnerabilities that pose risk. Traditional security measures that only look at code such as
SAST or HTTP traffic such as dynamic application security testing (DAST) generate huge volumes of false
positives that require security experts to resolve. IAST, on the other hand, has access to both of these
datasets—plus libraries and frameworks, application state, data flow, control flow, backend connections,
and configurations. The analysis engine then takes all this telemetry into account in assessing the risk of
different vulnerabilities. The process is the same whether the application is containerized or not. SAST and
DAST AppSec models rely on known signatures and do not account for unknown threats and zero-day
attacks. As upwards of 50 percent of malware and attacks are unknown or zero day, this results in false
negatives, which leave applications wide open to attacks—without the knowledge of the security team.

• Full visibility and risk. SAST and DAST AppSec models struggle to achieve full visibility across the full
application attack surface. In particular, they frequently cannot see across all application programming
interface (API) connections for each application. This results in missed vulnerabilities that can pose serious
risk to an application.

• Reduced security staff time spent on vulnerabilities. IAST provides vulnerability telemetry across the
entire application and API portfolio, and can help eliminate the majority of vulnerabilities without security
involvement.

TAKEAWAYS FOR DEVELOPERS

For development teams, security is viewed as an impediment to getting their job done. As a result, compliance
with NIST is not a big concern for many developers. However, addressing these new provisions in NIST can help
eliminate the developer’s biggest headache when it comes to security: delays caused by AppSec tools and
processes.

SAST, DAST, and software composition analysis (SCA) tools can all create delays in the development process,
and the need to do lengthy vulnerability scans can impact decisions on the timing of code changes and the
methodology used at different phases of the development process. Deploying security instrumentation in
accordance with NIST guidelines minimizes delays caused by security processes, while providing maximum flexibility
for development teams to innovate. Following are some of the key takeaways for developers:

• Elimination of vulnerability scans. SAST scanning is time-consuming and creates code halts and other
delays in the development cycle. With IAST, scanning is done continually in the background every time code is
executed. Developers can continue their work and structure their processes in the most efficient way without
having to worry about security delays.

• Early and continuous detection of vulnerabilities. Vulnerabilities in newly developed code will be identified
immediately the first time the code is executed. This greatly reduces the likelihood that vulnerabilities are
deployed in production. It also helps prevent the need for a major “rip and replace” of code late in the
development process.

• Fewer meetings. With IAST, all standard usage becomes an additional security test. Security results appear
as you walk through your application with adequate test coverage, either removing the need for a dedicated
security test plan or letting it focus on the uniqueness of your application. This dramatically reduces the
number of communications and meetings required between security and development staff to confirm
vulnerabilities, trace their origins, and remediate them with SAST and DAST models.

• Automated runtime verification of remediation. When developers remediate a vulnerability that IAST
has identified, the new code is immediately scanned so that developers have verification that the fix was
successful.

• Elimination of “tool soup.” Many organizations employ disparate SAST, DAST, and SCA tools to cover
the software development life cycle. Often, these disparate tools will find the same issue in different ways,
requiring duplicative manual work to review the issue. Running each of these tools and interpreting the
results takes time from the development process, and requires a lot of security expertise not present on the
development team. IAST combines the capabilities of these legacy tools and greatly expands them while
automating many manual processes.

5

SOLUTION B R I E F

contrastsecurity.com5

SOFTWARE, FIRMWARE, AND INFORMATION INTEGRITY | RUNTIME APPLICATION
SELF-PROTECTION

Implement [Assignment: organization-defined controls] for application self-protection at runtime.

Discussion: This control enhancement employs runtime instrumentation to detect and block the exploitation
of software vulnerabilities by taking advantage of information from the software in execution. Runtime exploit
prevention differs from traditional perimeter-based protection such as guards and firewalls, that can only
detect and block attacks by using network information without contextual awareness. Runtime application
self-protection technology can reduce the susceptibility of software to attacks by monitoring its inputs, and

Implications of Software, Firmware, and
Information Integrity [SI-7(17)]

blocking those inputs that could allow attacks. It can also help protect the runtime environment from unwanted
changes and tampering. When a threat is detected, runtime application self-protection technology can prevent
exploitation and take other actions (e.g., sending a warning message to the user, terminating the user’s session,
terminating the application, or sending an alert to organizational personnel). Runtime application self-protection
solutions can be deployed in either a monitor or protection mode.12

Runtime exploit prevention is different from traditional perimeter-based protections, such as guards and firewalls,
that can only detect and block attacks using network information absent contextual awareness. In contrast,
runtime application self-protection (RASP) monitors software inputs and blocks those that could allow attacks. It
also can take proactive actions to address attacks.

TAKEAWAYS FOR SECURITY TEAMS

Security teams benefit from RASP in varying ways:

• Elimination of false positives and negatives. Web application firewalls (WAFs) provide signature-based
blocking of web requests that look like attacks. They are notorious for both false positives and false
negatives. False positives in particular are very common: One study finds that 43 percent of organizations
identify more than one in five alerts as false positives.13 And 15 percent say that more than half of their
alerts are false positives. Security team members can spend many hours combing through WAF alerts to
distinguish legitimate threats from false positives.14

 On the other hand, RASP technology observes applications as they run, and analyzes whether a detected
attack string would successfully execute. By performing runtime analysis of whether an attack will be
successful, false positives are eliminated while helping ensure a secure application in production. This
eliminates both false positives and false negatives, enabling increased efficiency and better protection.

• Actionable alerts. Beyond eliminating the false positives that hamper security team productivity, RASP
technology distills the alert noise further, delivering highly accurate and relevant alerts based on an
application’s actual behavior.

• Improved scalability. RASP-instrumented “no-touch” application protection for built-in elasticity follows
applications everywhere— from on-premises to the cloud. This fully portable AppSec approach is
indifferent to network configurations, protocols, encryption, encoding, containers, microservices, and
more. RASP affords security teams seamless adoption of and migration to digital transformation without
operational disruptions or additional security expertise and skill sets.

• Increased visibility. RASP delivers 100 percent accurate runtime visibility that sees everything that is
happening—data flows, frameworks, connections, and so forth. Security instrumentation enables stack-file-
line, code-level visibility for the traceability of all code, and connections for both custom code and open
sources. This enables security teams to orchestrate remediation with precision runtime-security telemetry
and remediation prioritization, which accelerates secure code development. This raises the security
awareness level across the entire software development life cycle.

TAKEAWAYS FOR DEVELOPERS

RASP technology can save developers significant time through its granular assessment process that eliminates
false positives and prioritizes the risk of legitimate hits. Developers benefit in these ways:

6

SOLUTION B R I E F

contrastsecurity.com6

7

SOLUTION B R I E F

44% of companies
have delayed moving
an application into
production due to
security concerns.15

contrastsecurity.com7

• Elimination of false positives. False positives
from a WAF can waste a developer’s time in
fielding their security colleagues’ questions about
alerts that they receive. By performing runtime
analysis of whether an attack will be successful, it
eliminates false positives while helping ensure a
secure application in production.

• Better detection through runtime analysis.
WAFs are also notorious for false negatives
(viz., missed threats). Because they monitor
applications as they are running, RASPs can
identify virtually all attacks by how their code
executes.

The new AppSec guidelines found in NIST SP 800-53 are an acknowledgement that legacy tools are no longer
doing the job. Security teams are overwhelmed by both increasing risk and alert noise, and developers are
frustrated by security-related delays. The result for DevOps: a slower time to market and a larger potential for
vulnerabilities and attacks in production.

The new standards will help organizations “right the ship” and achieve continuous assurance. Organizations should
consider the following steps to accomplish this:

1. Adopt the NIST Cybersecurity Framework to minimize risk. NIST is considered the gold standard, and
following it optimizes an organization’s overall security posture by reducing risk.

2. Understand that security instrumentation is the key to meeting the new NIST requirements.

3. Eliminate security bottlenecks for the development team with DevOps-native and NIST-compliant security
instrumentation. This unleashes developers to impact revenue rather than wait for time-consuming security
testing and processes.

4. Optimize scarce cybersecurity talent by enabling developers to identify and remediate vulnerabilities in real
time while coding.

When these steps are taken, security teams are freed to focus on vulnerabilities that actually pose risk to their
organization, and developers are empowered to work efficiently, meet aggressive timelines, and deliver reliable and
secure applications in production.

Conclusion

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write
and release secure application code faster. Embedding code analysis and attack prevention directly
into software with instrumentation, the Contrast platform automatically detects vulnerabilities while
developers write code, eliminates false positives, and provides context-specific how-to-fix guidance
for easy and fast vulnerability remediation. Doing so enables application and development teams to
collaborate more effectively and to innovate faster while accelerating digital transformation initiatives.
This is why a growing number of the world’s largest private and public sector organizations rely on
Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

1 “Security and Privacy Controls for Information Systems and Organizations,” Draft NIST Special Publication 800-53, Revision 5, March 2020.
2 Ibid., p. 271.
3 Ibid., p. 339.
4 Ibid., p. 339.
5 Adam Shepherd, “500 New Cyber Threats Emerge Every Minute,” ITPro, March 13, 2018.
6 “Security and Privacy Controls for Information Systems and Organizations,” Draft NIST Special Publication 800-53, Revision 5, March 2020, p. 271.
7 Matthew Barrett, “Why Your State Should Join the 21 That Use the NIST Cybersecurity Framework,” StateTech, September 27, 2018.
8 “Cybersecurity Framework,” National Institute of Standards and Technology, accessed March 19, 2020.
9 Ibid., p. 339.
10 Ibid., p. 271.
11 Michael Hill, "Over a Quarter of Security Alerts Are False Positives," Infosecurity, March 17, 2020.
12 "Cybersecurity Framework," National Institute of Standards and Technology, accessed March 19, 2020.
13 Jeff Williams, "Why It's Insane to Trust Static Analysis," Dark Reading, September 22, 2015.
14 The State of Container and Kubernetes Security, Winter 2020," StackRox, accessed March 20, 2020.
15 Ibid.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://www.itpro.co.uk/cyber-crime/30754/500-new-cyber-threats-emerge-every-minute
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://statetechmagazine.com/article/2018/09/why-your-state-should-join-21-use-nist-cybersecurity-framework
https://www.nist.gov/industry-impacts/cybersecurity-framework
https://www.infosecurity-magazine.com/news/security-alerts-false-positives/
https://www.nist.gov/industry-impacts/cybersecurity-framework
https://www.darkreading.com/vulnerabilities---threats/why-its-insane-to-trust-static-analysis/a/d-id/1322274?
https://security.stackrox.com/state-of-containers-and-kubernetes-security-report-winter-2020.html?Source=Website&LSource=Website

