
For more information, please visit https://www.contrastsecurity.com/log4j2.

Contrast Security
Log4j and the Current State
of Code Security
Log4j began making global headlines on December 9th, 2021. Users of the popular
video game Minecraft found they could gain access to unauthorized information by
pasting special code into a chat message. The root cause, it soon became clear, was
a popular open-source programming library called Log4j, which is used by millions
of computer programs around the world.

Hackers quickly seized on the vulnerability to gain unauthorized access to major commercial services provided by Apple,
Amazon, Cloudflare, Steam, Tesla, Twitter, and Baidu. To illustrate how widespread the attack surface is, former hacker-
turned-cybersecurity blogger, Marcus Hutchins, tweeted, “In the case of Minecraft, attackers were able to get remote
code execution on Minecraft Servers by simply pasting a short message into the chat box.” A warning was issued through
the MITRE Common Vulnerabilities and Exposures (CVE) database, and the Apache foundation assigned the problem —
now formally known as CVE-2021-44228 — a CVSS score of 10 on a 1-to-10 scale, indicating the highest level of severity.

On Tuesday, January 4th, the FTC announced that it will pursue legal action and fines against companies that fail to
protect consumers from Log4j attacks, and other attacks like it in the future. The alert referenced Equifax, the credit
reporting agency that failed to address a known Apache Struts flaw in 2017, and was subsequently required to pay $700
million in settlements with the agency and with individual states.

What is Log4j?

Log4j (short for “logging for Java”) is a piece of free, pre-written, open-source code that developers use to log user inputs
on Java-based applications. That means that any Java-based system that logs even a user name is susceptible to attack.

Potential hackers can use the vulnerability to execute their own arbitrary computer code on a company’s servers,
allowing them to gain access to confidential or privileged information, or establish a foothold in an otherwise protected
environment. A single web request can be enough to initiate a Log4j hack. Often the request can occur even before a user
is authenticated. The implications are massive.

• Some 8.2 million programmers around the world currently use Java (ZDNet)
• 58% of Java apps contain vulnerable versions of Log4j
• While multiple patches have been so far released (with more likely coming in the future) Log4j is so common that

most organizations struggle to identify all the instances in their environments

Add to this the fact that implementing patches across multiple systems is both time and labor-intensive, and the result is
a vulnerability even worse than the 2017 Equifax hack, which cost that company over $425 million in fines alone.

https://www.contrastsecurity.com/log4j2
https://twitter.com/malwaretechblog/status/1469289471463944198?lang=en
https://twitter.com/malwaretechblog/status/1469289471463944198?lang=en
https://www.zdnet.com/article/programming-languages-python-developers-now-outnumber-java-ones/

For more information, please visit https://www.contrastsecurity.com/log4j2.

Large numbers of hacks have so far been documented, however little has been
reported about damage caused by breaches, which we will be hearing about in
the coming months. Perhaps more alarming is the fact that, despite extensive
media coverage, many vulnerable companies still don’t know about the
problem, which means that attacks are almost certainly still ongoing.

What Log4j has revealed

The present day code security world is dominated by static code analysis tools,
SCA tooling tied to code repositories, and web application firewalls (WAF).
How did these solutions fare against Log4j? The answer is: not well. Overall,
customers running separate security tooling (like SAST, SCA, and WAF) found
that they had no single source of truth for where Log4j was deployed, nor any
assurance that they were protected against it. Many were forced to use custom
scripts to identify which applications were running Log4j.

Scanning tools like SAST deployed across multiple teams forced businesses
to try to verify a deluge of results with no single source of truth. Even more
crucially, scanning tools were only able to analyze custom code in a silo —
without regard to open source components, nor the manner in which those
components were used. Static tools gave no hint of the problem, and even if
they had, SAST tools are so noisy, no one would have noticed.

SCA plugged into code repositories did no better, as it severely over-reported the issue. SCA tooling only looks at what’s
bundled, not what is being used or the manner in which it is being used. Many of the Log4j dependencies turned up by
SCA are only present for testing or transitive purposes, and aren’t packaged in the app itself. More than that, even some
of the dependencies that are packaged into the app aren’t actually used (Contrast data shows that while 58% of Java
applications package a vulnerable version of Log4j, only 37% actually use it). SCA, however, has no way of discriminating
between used and unused dependencies, which left businesses in the position of having to chase them all.

“Before Contrast, we were using
different static application security
testing (SAST), software composition
analysis (SCA), and WAF solutions.
We found ourselves overwhelmed
with tool soup. Contrast consolidated
everything into a single platform with
accurate and fast results that we were
not aware of before. The platform
features were more mature than their
competition and made it easier to
manage, integrate and consume results.
We were also impressed with the
seamless onboarding process. Contrast
is protecting us against the recently
disclosed Log4j vulnerability without
having to patch or update our servers.”

–Brian Vlootman, BackBase CISO

https://www.contrastsecurity.com/log4j2

For more information, please visit https://www.contrastsecurity.com/log4j2.

WAFs simply failed to protect running applications that had vulnerable versions of Log4j running. The reason, because
the data in those applications doesn’t just come from web input, and so isn’t visible with signatures. In addition, recipes
to evade most major commercial WAFs were disclosed within days of the exploit being uncovered. Companies found that
their attempts to issue updated rule sets were quickly defeated.

Contrast: Built to handle vulnerabilities like Log4j

The Contrast Secure Code Platform has been specifically engineered for security vulnerabilities like Log4j. Contrast’s
embedded approach allowed our customers, immediately and at scale, to identify which apps had versions of Log4j in
them; detect which apps were vulnerable, and; immediately stop attacks against those apps (without patching).

Figure 1: The Log4j attack (classified as “Expression Language Injection”) with and
without Contrast Protect enabled.

Contrast Assess saw the problem from the start. It has always reported
log injection and deserialization vulnerabilities associated with Log4j,
whenever untrusted data is logged without proper validation or escaping.
Any customer who fixes log injection vulnerabilities reported by Contrast
Assess is safe from Log4j.

“Just received the official notification
that Contrast is protecting against this.
GREAT WORK! This highlights a really big
win and has direct resource impacts for
folks internally using it. They actually get
to have the weekend off vs. other teams
scrambling to fix.”

–Distinguished advisor from a major medical
device manufacturer

https://www.contrastsecurity.com/log4j2

For more information, please visit https://www.contrastsecurity.com/log4j2.

Figure 2: Contrast Assess intrinsically identifies log injection vulnerabilities associated with the Log4j exploit.

Contrast SCA made identifying which apps were actually at risk as easy as a Google search, even cloud-native apps.
Instead of reporting libraries that aren’t actually used by the application in production, Contrast SCA provides exact
details on whether the library is actually invoked at runtime to help defenders implement the most urgent fixes.

“Contrast provided useful
reporting on log4j CVE for
apps onboarded to Contrast.
We also used information
from your blog. After this
week I can categorically say
there is a LOT more interest in
Contrast.”

–Elsevier BISO, Paul Lewis

https://www.contrastsecurity.com/log4j2
https://www.contrastsecurity.com/query-apps-log4j-sca?utm_campaign=WD-Log4jOffer-Q4FY22&utm_content=191281986&utm_medium=social&utm_source=linkedin&hss_channel=lcp-2908247

For more information, please visit https://www.contrastsecurity.com/log4j2.

Figure 3: Contrast SCA highlights if Log4j is actually called at runtime by highlighting class usage.

Conclusions

First it’s important to recognize that Log4j is only the most recent major security breach.
The truth is that equally serious events happen every day (if not always on a global scale).
Businesses that are serious about security need to be on constant alert. Real-time
protection is, and always will be, the key to defending against zero-day events like Log4j.

“This kind of thing happened before and will happen again,” said Steve Wilson, Chief
Product Officer at Contrast Security. “In 2017, Equifax announced a data breach that
exposed personal, confidential information and was very similar to this situation in many
ways. However Log4j is far more common than Apache Struts was at the time of the 2017
incident. This means that the exposure is far, far broader. The best strategy is to use
Runtime Protection, like Contrast Protect, to defend immediately without patching.”

The second thing to remember is that the Log4j crisis is far from over. Organizations are
just beginning to understand their exposure to Log4j. It’s an attack that’s easy-to-execute at scale, that evades firewalls,
and is extremely damaging once executed. So expect to see a lot of it in the coming weeks and months.

“We were able to analyze
whether our own built
software would be vulnerable
to the Log4j zero-day, using
the Contrast Secure Code
Platform, and got the answer
within 30 seconds by just
looking at the Libraries menu!
How fast is that!”

–Sandor Incze, CISO at CM.com

https://www.contrastsecurity.com/log4j2

For more information, please visit https://www.contrastsecurity.com/log4j2.

Third, all commonly used open-source code that lives in your supply chain is a potential point of failure.

Looking at the positives of the Log4j experience, communities and agencies were able to respond with answers, data and
tools much faster than ever before. We can only hope to see more such responsiveness in the future.

Overall, Log4j demonstrates the distinct advantage of security platforms like Contrast, which allow you to respond
instantly to a zero-day like Log4j without waiting for a patch, and let you future-proof your stack against the next major
vulnerabilities.

https://www.contrastsecurity.com/log4j2

